CONVERGENCE OF STOCHASTIC GENE NETWORKS TO HYBRID PIECEWISE DETERMINISTIC PROCESSES

成果类型:
Article
署名作者:
Crudu, A.; Debussche, A.; Muller, A.; Radulescu, O.
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite de Rennes; Universite Paris Saclay; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite de Lorraine; Universite de Montpellier
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/11-AAP814
发表日期:
2012
页码:
1822-1859
关键词:
markov-processes expression simulation systems origins noise
摘要:
We study the asymptotic behavior of multiscale stochastic gene networks using weak limits of Markov jump processes. Depending on the time and concentration scales of the system, we distinguish four types of limits: continuous piecewise deterministic processes (PDP) with switching, PDP with jumps in the continuous variables, averaged PDP, and PDP with singular switching. We justify rigorously the convergence for the four types of limits. The convergence results can be used to simplify the stochastic dynamics of gene network models arising in molecular biology.
来源URL: