QUENCHED LIMITS FOR THE FLUCTUATIONS OF TRANSIENT RANDOM WALKS IN RANDOM ENVIRONMENT ON Z
成果类型:
Article
署名作者:
Enriquez, Nathanael; Sabot, Christophe; Tournier, Laurent; Zindy, Olivier
署名单位:
Universite Paris Nanterre; Universite Paris Cite; Sorbonne Universite; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Ecole Centrale de Lyon; Institut National des Sciences Appliquees de Lyon - INSA Lyon; Universite Claude Bernard Lyon 1; Universite Jean Monnet; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite Paris 13
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/12-AAP867
发表日期:
2013
页码:
1148-1187
关键词:
dimensional random-walk
摘要:
We consider transient nearest-neighbor random walks in random environment on Z. For a set of environments whose probability is converging to 1 as time goes to infinity, we describe the fluctuations of the hitting time of a level n, around its mean, in terms of an explicit function of the environment. Moreover, their limiting law is described using a Poisson point process whose intensity is computed. This result can be considered as the quenched analog of the classical result of Kesten, Kozlov and Spitzer [Compositio Math. 30 (1975) 145-168].