STOCHASTIC COALESCENCE IN LOGARITHMIC TIME

成果类型:
Article
署名作者:
Loh, Po-Shen; Lubetzky, Eyal
署名单位:
Carnegie Mellon University; Microsoft
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/11-AAP832
发表日期:
2013
页码:
492-528
关键词:
information leader-election
摘要:
The following distributed coalescence protocol was introduced by Dahlia Malkhi in 2006 motivated by applications in social networking. Initially there are n agents wishing to coalesce into one cluster via a decentralized stochastic process, where each round is as follows: every cluster flips a fair coin to dictate whether it is to issue or accept requests in this round. Issuing a request amounts to contacting a cluster randomly chosen proportionally to its size. A cluster accepting requests is to select an incoming one uniformly (if there are such) and merge with that cluster. Empirical results by Fernandess and Malkhi suggested the protocol concludes in O (log n) rounds with high probability, whereas numerical estimates by Oded Schramm, based on an ingenious analytic approximation, suggested that the coalescence time should be super-logarithmic. Our contribution is a rigorous study of the stochastic coalescence process with two consequences. First, we confirm that the above process indeed requires super-logarithmic time w.h.p., where the inefficient rounds are due to oversized clusters that occasionally develop. Second, we remedy this by showing that a simple modification produces an essentially optimal distributed protocol; if clusters favor their smallest incoming merge request then the process does terminate in O (log n) rounds w.h.p., and simulations show that the new protocol readily outperforms the original one. Our upper bound hinges on a potential function involving the logarithm of the number of clusters and the cluster-susceptibility, carefully chosen to form a supermartingale. The analysis of the lower bound builds upon the novel approach of Schramm which may find additional applications: rather than seeking a single parameter that controls the system behavior, instead one approximates the system by the Laplace transform of the entire cluster-size distribution.