KALIKOW-TYPE DECOMPOSITION FOR MULTICOLOR INFINITE RANGE PARTICLE SYSTEMS

成果类型:
Article
署名作者:
Galves, A.; Garcia, N. L.; Loecherbach, E.; Orlandi, E.
署名单位:
Universidade Estadual de Campinas; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); CY Cergy Paris Universite; Roma Tre University
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/12-AAP882
发表日期:
2013
页码:
1629-1659
关键词:
perfect simulation image-restoration markov-chains random-fields statistical-mechanics point-processes loss networks models ergodicity EXISTENCE
摘要:
We consider a particle system on Z(d) with real state space and interactions of infinite range. Assuming that the rate of change is continuous we obtain a Kalikow-type decomposition of the infinite range change rates as a mixture of finite range change rates. Furthermore, if a high noise condition holds, as an application of this decomposition, we design a feasible perfect simulation algorithm to sample from the stationary process. Finally, the perfect simulation scheme allows us to forge an algorithm to obtain an explicit construction of a coupling attaining Ornstein's (d) over bar -distance for two ordered Ising probability measures.
来源URL: