REGULARITY CONDITIONS IN THE REALISABILITY PROBLEM WITH APPLICATIONS TO POINT PROCESSES AND RANDOM CLOSED SETS

成果类型:
Article
署名作者:
Lachieze-Rey, Raphael; Molchanov, Ilya
署名单位:
Universite Paris Cite; University of Bern
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/13-AAP990
发表日期:
2015
页码:
116-149
关键词:
Sufficient conditions
摘要:
We study existence of random elements with partially specified distributions. The technique relies on the existence of a positive extension for linear functionals accompanied by additional conditions that ensure the regularity of the extension needed for interpreting it as a probability measure. It is shown in which case the extension can be chosen to possess some invariance properties. The results are applied to the existence of point processes with given correlation measure and random closed sets with given two-point covering function or contact distribution function. It is shown that the regularity condition can be efficiently checked in many cases in order to ensure that the obtained point processes are indeed locally finite and random sets have closed realisations.