COEXISTENCE OF GRASS, SAPLINGS AND TREES IN THE STAVER-LEVIN FOREST MODEL

成果类型:
Article
署名作者:
Durrett, Rick; Zhang, Yuan
署名单位:
Duke University
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/14-AAP1079
发表日期:
2015
页码:
3434-3464
关键词:
savanna
摘要:
In this paper, we consider two attractive stochastic spatial models in which each site can be in state 0, 1 or 2: Krone's model in which 0 = vacant, 1 = juvenile and 2 = a mature individual capable of giving birth, and the Staver-Levin forest model in which 0 = grass, 1 = sapling and 2 = tree. Our first result shows that if (0, 0) is an unstable fixed point of the mean-field ODE for densities of 1's and 2's then when the range of interaction is large, there is positive probability of survival starting from a finite set and a stationary distribution in which all three types are present. The result we obtain in this way is asymptotically sharp for Krone's model. However, in the Staver-Levin forest model, if (0, 0) is attracting then there may also be another stable fixed point for the ODE, and in some of these cases there is a nontrivial stationary distribution.