UNBIASEDNESS OF SOME GENERALIZED ADAPTIVE MULTILEVEL SPLITTING ALGORITHMS
成果类型:
Article
署名作者:
Brehier, Charles-Edouard; Gazeau, Maxime; Goudenege, Ludovic; Lelievre, Tony; Rousset, Mathias
署名单位:
Centre National de la Recherche Scientifique (CNRS); Universite Claude Bernard Lyon 1; Centre National de la Recherche Scientifique (CNRS); Ecole Centrale de Lyon; Institut National des Sciences Appliquees de Lyon - INSA Lyon; Universite Claude Bernard Lyon 1; Universite Jean Monnet; University of Toronto; Universite Paris Saclay; Centre National de la Recherche Scientifique (CNRS); Institut Polytechnique de Paris; Ecole Nationale des Ponts et Chaussees; Universite Gustave-Eiffel; Inria; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Ecole Centrale de Lyon; Institut National des Sciences Appliquees de Lyon - INSA Lyon; Universite Claude Bernard Lyon 1; Universite Jean Monnet
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/16-AAP1185
发表日期:
2016
页码:
3559-3601
关键词:
rare event simulation
摘要:
We introduce a generalization of the Adaptive Multilevel Splitting algorithm in the discrete time dynamic setting, namely when it is applied to sample rare events associated with paths of Markov chains. We build an estimator of the rare event probability (and of any nonnormalized quantity associated with this event) which is unbiased, whatever the choice of the importance function and the number of replicas. This has practical consequences on the use of this algorithm, which are illustrated through various numerical experiments.