STEIN ESTIMATION OF THE INTENSITY OF A SPATIAL HOMOGENEOUS POISSON POINT PROCESS

成果类型:
Article
署名作者:
Clausel, Marianne; Coeurjolly, Jean-Francois; Lelong, Jerome
署名单位:
Communaute Universite Grenoble Alpes; Institut National Polytechnique de Grenoble; Universite Grenoble Alpes (UGA); Centre National de la Recherche Scientifique (CNRS); Inria
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/15-AAP1124
发表日期:
2016
页码:
1495-1534
关键词:
configuration-spaces stochastic-analysis calculus geometry drift
摘要:
In this paper, we revisit the original ideas of Stein and propose an estimator of the intensity parameter of a homogeneous Poisson point process defined on R-d and observed on a bounded window. The procedure is based on a new integration by parts formula for Poisson point processes. We show that our Stein estimator outperforms the maximum likelihood estimator in terms of mean squared error. In many practical situations, we obtain a gain larger than 30%.