ESTIMATION FOR STOCHASTIC DAMPING HAMILTONIAN SYSTEMS UNDER PARTIAL OBSERVATION. III. DIFFUSION TERM

成果类型:
Article
署名作者:
Cattiaux, Patrick; Leon, Jose R.; Prieur, Clementine
署名单位:
Universite de Toulouse; Universite Toulouse III - Paul Sabatier; University of Central Venezuela; Communaute Universite Grenoble Alpes; Universite Grenoble Alpes (UGA); Communaute Universite Grenoble Alpes; Institut National Polytechnique de Grenoble; Universite Grenoble Alpes (UGA); Centre National de la Recherche Scientifique (CNRS); Inria
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/15-AAP1126
发表日期:
2016
页码:
1581-1619
关键词:
parameter-estimation MARKOV-PROCESSES LIMIT-THEOREMS CONVERGENCE SEMIMARTINGALES functionals coefficient DYNAMICS models
摘要:
This paper is the third part of our study started with Cattiaux, Leon and Prieur [Stochastic Process. Appl. 124 (2014) 1236-1260; ALEA Lat. Am. J. Probab. Math. Stat. 11 (2014) 359-384]. For some ergodic Hamiltonian systems, we obtained a central limit theorem for a nonparametric estimator of the invariant density [Stochastic Process. Appl. 124 (2014) 1236-1260] and of the drift term [ALEA Lat. Am. J. Probab. Math. Stat. 11 (2014) 359-384], under partial observation (only the positions are observed). Here, we obtain similarly a central limit theorem for a nonparametric estimator of the diffusion term.