UNORIENTED FIRST-PASSAGE PERCOLATION ON THE n-CUBE
成果类型:
Article
署名作者:
Martinsson, Anders
署名单位:
Chalmers University of Technology; University of Gothenburg
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/15-AAP1155
发表日期:
2016
页码:
2597-2625
关键词:
摘要:
The n-dimensional binary hypercube is the graph whose vertices are the binary n-tuples {0,1)(n) and where two vertices are connected by an edge if they differ at exactly one coordinate. We prove that if the edges are assigned independent mean 1 exponential costs, the minimum length T-n of a path from (0,0,..., 0) to (1,1,, 1) converges in probability to ln(1 + root 2) approximate to 0.881. It has previously been shown by Fill and Pemantle [Ann. Appl. Probab. 3 (1993) 593-629] that this so-called first-passage time asymptotically almost surely satisfies ln(1 + root 2) - 0(1) <= T-n <= 1+ 0(1), and has been conjectured to converge in probability by Bollobas and Kohayakawa [In Combinatorics, Geometry and Probability (Cambridge, 1993) (1997) 129-137 Cambridge]. A key idea of our proof is to consider a lower bound on Richardson's model, closely related to the branching process used in the article by Fill and Pemantle to obtain the bound T-n >= ln(1 + root 2) - 0(1). We derive an explicit lower bound on the probability that a vertex is infected at a given time. This result is formulated for a general graph and may be applicable in a more general setting.