QUANTITATIVE PROPAGATION OF CHAOS FOR GENERALIZED KAC PARTICLE SYSTEMS
成果类型:
Article
署名作者:
Cortez, Roberto; Fontbona, Joaquin
署名单位:
Universidad de Chile; Universidad de Chile
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/15-AAP1107
发表日期:
2016
页码:
892-916
关键词:
equation
models
摘要:
We study a class of one-dimensional particle systems with true (Bird type) binary interactions, which includes Kac's model of the Boltzmann equation and nonlinear equations for the evolution of wealth distribution arising in kinetic economic models. We obtain explicit rates of convergence for the Wasserstein distance between the law of the particles and their limiting law, which are linear in time and depend in a mild polynomial manner on the number of particles. The proof is based on a novel coupling between the particle system and a suitable system of nonindependent nonlinear processes, as well as on recent sharp estimates for empirical measures.
来源URL: