EXACT SIMULATION OF THE WRIGHT-FISHER DIFFUSION
成果类型:
Article
署名作者:
Jenkins, Paul A.; Spano, Dario
署名单位:
University of Warwick; University of Warwick
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/16-AAP1236
发表日期:
2017
页码:
1478-1509
关键词:
transition density expansion
line-of-descent
inference
allele
population
selection
MODEL
approximation
摘要:
The Wright-Fisher family of diffusion processes is a widely used class of evolutionary models. However, simulation is difficult because there is no known closed-form formula for its transition function. In this article, we demonstrate that it is in fact possible to simulate exactly from a broad class of Wright-Fisher diffusion processes and their bridges. For those diffusions corresponding to reversible, neutral evolution, our key idea is to exploit an eigenfunction expansion of the transition function; this approach even applies to its infinite-dimensional analogue, the Fleming-Viot process. We then develop an exact rejection algorithm for processes with more general drift functions, including those modelling natural selection, using ideas from retrospective simulation. Our approach also yields methods for exact simulation of the moment dual of the Wright-Fisher diffusion, the ancestral process of an infinite-leaf Kingman coalescent tree. We believe our new perspective on diffusion simulation holds promise for other models admitting a transition eigenfunction expansion.