METASTABILITY FOR GLAUBER DYNAMICS ON RANDOM GRAPHS
成果类型:
Article
署名作者:
Dommers, S.; Den Hollander, F.; Jovanovski, O.; Nardi, F. R.
署名单位:
Ruhr University Bochum; Leiden University - Excl LUMC; Leiden University; Eindhoven University of Technology
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/16-AAP1251
发表日期:
2017
页码:
2130-2158
关键词:
small transition-probabilities
markov-chains
critical configurations
Stochastic dynamics
low-temperature
general domain
exit problem
ising-model
droplets
asymptotics
摘要:
In this paper, we study metastable behaviour at low temperature of Glauber spin-flip dynamics on random graphs. We fix a large number of vertices and randomly allocate edges according to the configuration model with a prescribed degree distribution. Each vertex carries a spin that can point either up or down. Each spin interacts with a positive magnetic field, while spins at vertices that are connected by edges also interact with each other via a ferro-magnetic pair potential. We start from the configuration where all spins point down, and allow spins to flip up or down according to a Metropolis dynamics at positive temperature. We are interested in the time it takes the system to reach the configuration where all spins point up. In order to achieve this transition, the system needs to create a sufficiently large droplet of up-spins, called critical droplet, which triggers the crossover. In the limit as the temperature tends to zero, and subject to a certain key hypothesis implying metastable behaviour, the average crossover time follows the classical Arrhenius law, with an exponent and a prefactor that are controlled by the energy and the entropy of the critical droplet. The crossover time divided by its average is exponentially distributed. We study the scaling behaviour of the exponent as the number of vertices tends to infinity, deriving upper and lower bounds. We also identify a regime for the magnetic field and the pair potential in which the key hypothesis is satisfied. The critical droplets, representing the saddle points for the crossover, have a size that is of the order of the number of vertices. This is because the random graphs generated by the configuration model are expander graphs.
来源URL: