DICTATOR FUNCTIONS MAXIMIZE MUTUAL INFORMATION
成果类型:
Article
署名作者:
Pichler, Georg; Piantanida, Pablo; Matz, Gerald
署名单位:
Technische Universitat Wien; Universite Paris Saclay; Centre National de la Recherche Scientifique (CNRS)
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/18-AAP1384
发表日期:
2018
页码:
3094-3101
关键词:
boolean functions
摘要:
Let (X, Y) denote n independent, identically distributed copies of two arbitrarily correlated Rademacher random variables (X, Y). We prove that the inequality I( f (X); g (Y)) <= I(X; Y) holds for any two Boolean functions: f, g: {-1,1}(n) -> {-1,1} [I(.;.) denotes mutual information]. We further show that equality in general is achieved only by the dictator functions f(x) = +/- g(x) = +/- x(i), i is an element of {1,2,...,n}.
来源URL: