AFFINE VOLTERRA PROCESSES

成果类型:
Article
署名作者:
Jaber, Eduardo Abi; Larsson, Martin; Pulido, Sergio
署名单位:
Institut Polytechnique de Paris; Ecole Polytechnique; Swiss Federal Institutes of Technology Domain; ETH Zurich; Ecole Nationale Superieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE); Universite Paris Saclay; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Institut Polytechnique de Paris; ENSTA Paris; Ecole Polytechnique; Ecole Nationale Superieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE); Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite Paris Saclay
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/19-AAP1477
发表日期:
2019
页码:
3155-3200
关键词:
stochastic volatility EQUATIONS
摘要:
We introduce affine Volterra processes, defined as solutions of certain stochastic convolution equations with affine coefficients. Classical affine diffusions constitute a special case, but affine Volterra processes are neither semimartingales, nor Markov processes in general. We provide explicit exponential-affine representations of the Fourier-Laplace functional in terms of the solution of an associated system of deterministic integral equations of convolution type, extending well-known formulas for classical affine diffusions. For specific state spaces, we prove existence, uniqueness, and invariance properties of solutions of the corresponding stochastic convolution equations. Our arguments avoid infinite-dimensional stochastic analysis as well as stochastic integration with respect to non-semimartingales, relying instead on tools from the theory of finite-dimensional deterministic convolution equations. Our findings generalize and clarify recent results in the literature on rough volatility models in finance.