ROBUST HEDGING OF OPTIONS ON A LEVERAGED EXCHANGE TRADED FUND

成果类型:
Article
署名作者:
Cox, Alexander M. G.; Kinsley, Sam M.
署名单位:
University of Bath
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/18-AAP1427
发表日期:
2019
页码:
531-576
关键词:
optimal transport stopping-times martingale maximum
摘要:
A leveraged exchange traded fund (LETF) is an exchange traded fund that uses financial derivatives to amplify the price changes of a basket of goods. In this paper, we consider the robust hedging of European options on a LETF, finding model-free bounds on the price of these options. To obtain an upper bound, we establish a new optimal solution to the Skorokhod embedding problem (SEP) using methods introduced in Beiglbock- Cox-Huesmann. This stopping time can be represented as the hitting time of some region by a Brownian motion, but unlike other solutions of, for example, Root, this region is not unique. Much of this paper is dedicated to characterising the choice of the embedding region that gives the required optimality property. Notably, this appears to be the first solution to the SEP where the solution is not uniquely characterised by its geometric structure, and an additional condition is needed on the stopping region to guarantee that it is the optimiser. An important part of determining the optimal region is identifying the correct form of the dual solution, which has a financial interpretation as a model-independent superhedging strategy.
来源URL: