PROPAGATION OF CHAOS AND THE MANY-DEMES LIMIT FOR WEAKLY INTERACTING DIFFUSIONS IN THE SPARSE REGIME

成果类型:
Article
署名作者:
Hutzenthaler, Martin; Pieper, Daniel
署名单位:
University of Duisburg Essen
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/20-AAP1559
发表日期:
2020
页码:
2311-2354
关键词:
large numbers converge LAW
摘要:
Propagation of chaos is a well-studied phenomenon and shows that weakly interacting diffusions may become independent as the system size converges to infinity. Most of the literature focuses on the case of exchangeable systems where all involved diffusions have the same distribution and are of the same size. In this paper, we analyze the case where only a few diffusions start outside of an accessible trap. Our main result shows that in this sparse regime the system of weakly interacting diffusions converges in distribution to a forest of excursions from the trap. In particular, initial independence propagates in the limit and results in a forest of independent trees.
来源URL: