DIFFUSION-APPROXIMATION FOR A KINETIC EQUATION WITH PERTURBED VELOCITY REDISTRIBUTION PROCESS

成果类型:
Article
署名作者:
Caillerie, Nils; Vovelle, Julien
署名单位:
Georgetown University; Centre National de la Recherche Scientifique (CNRS); Ecole Normale Superieure de Lyon (ENS de LYON)
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/20-AAP1619
发表日期:
2021
页码:
1299-1335
关键词:
nonlinear schrodinger-equation models limit chemotaxis
摘要:
We derive the hydrodynamic limit of a kinetic equation with a stochastic, short range perturbation of the velocity operator. Under some mixing hypotheses on the stochastic perturbation, we establish a diffusion-approximation result: the limit we obtain is a parabolic stochastic partial differential equation on the macroscopic parameter, the density here.
来源URL: