QUANTITATIVE SPECTRAL GAP ESTIMATE AND WASSERSTEIN CONTRACTION OF SIMPLE SLICE SAMPLING
成果类型:
Article
署名作者:
Natarovskii, Viacheslav; Rudolf, Daniel; Sprungk, Bjoern
署名单位:
University of Gottingen; Technical University Freiberg
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/20-AAP1605
发表日期:
2021
页码:
806-825
关键词:
chain monte-carlo
CONVERGENCE
摘要:
We prove Wasserstein contraction of simple slice sampling for approximate sampling w.r.t. distributions with log-concave and rotational invariant Lebesgue densities. This yields, in particular, an explicit quantitative lower bound of the spectral gap of simple slice sampling. Moreover, this lower bound carries over to more general target distributions depending only on the volume of the (super-)level sets of their unnormalized density.
来源URL: