STOCHASTIC NONLINEAR SCHRÖDINGER EQUATIONS IN THE DEFOCUSING MASS AND ENERGY CRITICAL CASES

成果类型:
Article
署名作者:
Zhang, Deng
署名单位:
Shanghai Jiao Tong University
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/22-AAP1903
发表日期:
2023
页码:
3652-3705
关键词:
global well-posedness data cauchy-theory schrodinger-equation sure scattering wave equation large deviations blow-up driven noise inequalities
摘要:
We study the stochastic nonlinear Schrodinger equations with linear multiplicative noise, particularly in the defocusing mass-critical and energy -critical cases. For general initial data, we prove the global well-posedness of solutions in both mass-critical and energy-critical cases. We also prove the rescaled scattering behavior of global solutions in the spaces L-2, H-1 as well as the pseudo-conformal space for dimensions d >= 3 in the case of finite global quadratic variation of noise. Furthermore, the Stroock-Varadhan type theorem is also obtained for the topological support of the probability distribution induced by global solutions in the Strichartz and local smoothing spaces. Our proof is based on the construction of a new family of rescaling transformations indexed by stopping times and on the stability analysis adapted to the multiplicative noise.