QUANTIFYING A CONVERGENCE THEOREM OF GYoNGY AND KRYLOV
成果类型:
Article
署名作者:
Dareiotis, Konstantinos; Gerencser, Mate; Le, Khoa
署名单位:
University of Leeds; Technische Universitat Wien; Technical University of Berlin
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/22-AAP1867
发表日期:
2023
页码:
2291-2323
关键词:
euler-maruyama scheme
multidimensional sdes
stochastic-equations
occupation time
approximation
drift
EXISTENCE
摘要:
We derive sharp strong convergence rates for the Euler-Maruyama scheme approximating multidimensional SDEs with multiplicative noise without imposing any regularity condition on the drift coefficient. In case the noise is additive, we show that Sobolev regularity can be leveraged to obtain improved rate: drifts with regularity of order alpha e (0, 1) lead to rate (1 + alpha )/2.
来源URL: