THE WIRED MINIMAL SPANNING FOREST ON THEPOISSON-WEIGHTED INFINITE TREE

成果类型:
Article
署名作者:
Nachmias, Asaf; Tang, Pengfei
署名单位:
Tel Aviv University; Tianjin University
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/23-AAP2027
发表日期:
2024
页码:
2415-2446
关键词:
random-walk percolation cluster
摘要:
We study the spectral and diffusive properties of the wired minimal span-ning forest (WMSF) on the Poisson-weighted infinite tree (PWIT). LetMbethe tree containing the root in the WMSF on the PWIT and(Y-n)(n >= 0)be asimple random walk onMstarting from the root. We show that almost surelyMhasP[Y-2n=Y-0]=n-(3/4+o(1))and dist(Y-0,Y-n)=n(1/4+o(1))with highprobability. That is, the spectral dimension ofMis 3/2 and its typical dis-placement exponent is 1/4, almost surely. These confirm Addario-Berry'spredictions (Addario-Berry (2013)).