GIBBS EQUILIBRIUM FLUCTUATIONS OF POINT VORTEX DYNAMICS
成果类型:
Article
署名作者:
Grotto, Francesco; Luongo, Eliseo; Romito, Marco
署名单位:
University of Pisa; Scuola Normale Superiore di Pisa
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/24-AAP2095
发表日期:
2024
页码:
5426-5461
关键词:
2-dimensional euler equations
weak vorticity-formulation
singular initial data
statistical-mechanics
2d euler
stationary flows
EVOLUTION
propagation
EXISTENCE
chaos
摘要:
We consider a system of N point vortices in a bounded domain with null total circulation, whose statistics are given by the canonical Gibbs ensemble at inverse temperature beta >= 0. We prove that the space-time fluctuation field around the (constant) mean field limit satisfies when N -> infinity a generalized version of two-dimensional Euler dynamics preserving the Gaussian energyenstrophy ensemble.