QUASILINEAR ROUGH EVOLUTION EQUATIONS

成果类型:
Article
署名作者:
Hocquet, Antoine; Neamtu, Alexandra
署名单位:
Technical University of Berlin; University of Konstanz
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/24-AAP2065
发表日期:
2024
页码:
4268-4309
关键词:
partial-differential-equations random dynamical-systems mild solutions EXISTENCE
摘要:
We investigate the abstract Cauchy problem for a quasilinear parabolic equation in a Banach space of the form dut - Lt(ut)ut dt = Nt(ut)dt + F(ut) d X t , where X is a gamma-H & ouml;lder rough path for gamma E ( 1 / 3 , 1/2). We explore the mild formulation that combines functional analysis techniques and controlled rough paths theory which entail the local well-posedness of such equations. We apply our results to the stochastic Landau-Lifshitz-Gilbert and Shigesada-Kawasaki-Teramoto equation.