EULER SCHEME FOR SDES DRIVEN BY FRACTIONAL BROWNIAN MOTIONS: INTEGRABILITY AND CONVERGENCE IN LAW
成果类型:
Article
署名作者:
Leon, Jorge a.; Liu, Yanghui; Tindel, Samy
署名单位:
CINVESTAV - Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional; City University of New York (CUNY) System; Baruch College (CUNY); Purdue University System; Purdue University
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/25-AAP2161
发表日期:
2025
页码:
1869-1912
关键词:
STOCHASTIC DIFFERENTIAL-EQUATIONS
weak
approximation
rates
ORDER
摘要:
We prove that the Euler scheme for stochastic differential equations driven by fractional Brownian motions (fBm) with Hurst parameter H > 1/3 and its Malliavin derivatives are integrable uniformly in step size n. Then we use the integrability results to derive the weak convergence rate n1-4H+epsilon for the Euler scheme. The proof for integrability is based on an application of the argument of (Ann. Probab. 41 (2013) 3026-3050) to a quadratic functional of the fBm. The proof of weak convergence applies Malliavin calculus and some upper-bound estimates for weighted random sums.