Mean field bounds on Lyapunov exponents in Zd at the critical energy
成果类型:
Article
署名作者:
Wang, WM
署名单位:
Universite Paris Saclay; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI)
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/PL00008767
发表日期:
2001
页码:
453-474
关键词:
anderson model
smoothness
density
STATES
摘要:
We further develop thr supersymmetric formalism initiated in [W1] (see also [SjW]). We obtain the optimal mean field bounds at the critical energy for Lyapunov exponents of random walks in random potentials in Z(d) at weak disorder. This extends some of the results in [W1].
来源URL: