Ito's formula for C1,λ-functions of a cadlag process and related calculus

成果类型:
Article
署名作者:
Errami, M; Russo, F; Vallois, P
署名单位:
Universite Paris 13; Universite de Lorraine
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s004400100168
发表日期:
2002
页码:
191-221
关键词:
stochastic calculus SEMIMARTINGALES
摘要:
This article develops a framework of stochastic calculus with respect to a cadlag finite quadratic variation process. We apply it to the study of a generalization of a semi-martingale driven SDE studied by Kurtz, Pardoux and Protter [KPP]. We prove an Ito's formula for functions f(X) of a semimartingale with jumps when f has weak smoothness properties. Examples of X for which this formula is valid are time reversible semimartingales and solutions of [KPP] equations driven by Levy processes, provided the sum of the absolute values of the jumps, raised to the power 1 + lambda is a.s. finite, where lambda takes values between 0 and 1.
来源URL: