Exact constants for pointwise adaptive estimation under the Riesz transform

成果类型:
Article
署名作者:
Klemelä, J; Tsybakov, AB
署名单位:
Ruprecht Karls University Heidelberg; Universite Paris Cite; Sorbonne Universite
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-004-0348-9
发表日期:
2004
页码:
441-467
关键词:
sup-norm statistical approach adaptation
摘要:
We consider nonparametric estimation of a multivariate function and its partial derivatives at a fixed point when the Riesz transform of the function is observed in Gaussian white noise. We assume that the unknown function belongs to some Sobolev class and construct an estimation procedure which achieves the best asymptotic minimax risk when the smoothness of the function is unknown.