Quenched invariance principles for walks on clusters of percolation or among random conductances

成果类型:
Article
署名作者:
Sidoravicius, V; Sznitman, AS
署名单位:
Instituto Nacional de Matematica Pura e Aplicada (IMPA); Swiss Federal Institutes of Technology Domain; ETH Zurich
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-004-0336-0
发表日期:
2004
页码:
219-244
关键词:
reversible markov-processes limit homogenization
摘要:
In this work we principally study random walk on the supercritical infinite cluster for bond percolation on Z(d). We prove a quenched functional central limit theorem for the walk when dgreater than or equal to4. We also prove a similar result for random walk among i.i.d. random conductances along nearest neighbor edges of Z(d), when dgreater than or equal to1.
来源URL: