Poincare and logarithmic Sobolev inequality for Ginzburg-landau processes in random environment
成果类型:
Article
署名作者:
Landim, C; Neto, JN
署名单位:
Universite de Rouen Normandie; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI)
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-004-0370-y
发表日期:
2005
页码:
229-260
关键词:
lattice-gas dynamics
spectral gap
kawasaki dynamics
equilibrium
constant
摘要:
We consider reversible, conservative Ginzburg-Landau processes in a random environment, whose potential are bounded perturbations of the Gaussian potential, evolving on a d-dimensional cube of length L. We prove in all dimensions that the spectral gap of the generator and the logarithmic Sobolev constant are of order L-2 almost surely with respect to the environment.