Convergence and local equilibrium for the one-dimensional nonzero mean exclusion process

成果类型:
Article
署名作者:
Bahadoran, C.; Mountford, T. S.
署名单位:
Universite Clermont Auvergne (UCA); Swiss Federal Institutes of Technology Domain; Ecole Polytechnique Federale de Lausanne
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-005-0484-x
发表日期:
2006
页码:
341-362
关键词:
attractive particle-systems limit
摘要:
We consider finite-range, nonzero mean, one-dimensional exclusion processes on Zeta. We show that, if the initial configuration has ``density'' alpha, then the process converges in distribution to the product Bernoulli measure with mean density alpha. From this we deduce the strong form of local equilibrium in the hydrodynamic limit for non-product initial measures.