Strengthening classical results on convergence rates in strong limit theorems

成果类型:
Article
署名作者:
Spataru, Aurel
署名单位:
Romanian Academy; Institute of Mathematical Statistics & Applied Mathematics of Romanian Academy
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-004-0404-5
发表日期:
2006
页码:
1-18
关键词:
sums LAW probabilities inequalities
摘要:
Let X-1, X-2, . . . be i.i.d. random variables, and set S-n=X-1+ . . . +X-n. Several authors proved convergence of series of the type f(epsilon)=Sigma(n)c(n)P(|S-n| > epsilon a(n)), epsilon >alpha, under necessary and sufficient conditions. We show that under the same conditions, in fact integral(infinity)(delta) f(epsilon)d epsilon < infinity, delta > alpha, i.e. the finiteness of Sigma(n)c(n)P(|S-n| > epsilon a(n)), epsilon >alpha, is equivalent to the convergence of the double sum Sigma(k)Sigma(n)c(n)P(|S-n| > ka(n)). Two exceptional series required deriving necessary and sufficient conditions for E[sup(n)|S-n|(log(n))(eta)/n] < infinity, 0 <= eta <= 1.
来源URL: