Independence of linear forms with random coefficients
成果类型:
Article
署名作者:
Chistyakov, G. P.; Goetze, F.
署名单位:
National Academy of Sciences Ukraine; B. Verkin Institute for Low Temperature Physics & Engineering of the National Academy of Sciences of Ukraine; University of Bielefeld
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-006-0503-6
发表日期:
2007
页码:
1-24
关键词:
dependent random-variables
darmois-skitovitch
THEOREM
摘要:
We extend the classical Darmois-Skitovich theorem to the case where the linear forms L-r1 = U1X1 +center dot center dot center dot+ UnXn and L-r2 = Un+1X1+center dot center dot center dot+U2nXn have random coefficients U-1,...,U-2n. Under minimal restrictions on the random coefficients we completely describe the distributions of the independent random variables X-1,...,X-n and U-1,...,U-2n such that the linear forms L-r1 and L-r2 are independent.
来源URL: