Limit theorems for Toeplitz quadratic functionals of continuous-time stationary processes
成果类型:
Article
署名作者:
Ginovyan, M. S.; Sahakyan, A. A.
署名单位:
Boston University; National Academy of Sciences of Armenia; Institute of Mathematics - NAS RA
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-006-0037-y
发表日期:
2007
页码:
551-579
关键词:
long-range dependence
gaussian-processes
random-variables
forms
CONVERGENCE
摘要:
Let X(t), t is an element of R, be a centered real-valued stationary Gaussian process with spectral density f (lambda). The paper considers a question concerning asymptotic distribution of Toeplitz type quadratic functional Q(T) of the process X(t), generated by an integrable even function g(lambda). Sufficient conditions in terms of f (lambda) and g(lambda) ensuring central limit theorems for standard normalized quadratic functionals Q(T) are obtained, extending the results of Fox and Taqqu (Prob. Theory Relat. Fields 74: 213-240, 1987), Avram (Prob. Theory Relat. Fields 79:37-45, 1988), Giraitis and Surgailis (Prob. Theory Relat. Fields 86: 87-104, 1990), Ginovian and Sahakian (Theory Prob. Appl. 49:612-628, 2004) for discrete time processes.
来源URL: