A shorter proof of Kanter's Bessel function concentration bound
成果类型:
Article
署名作者:
Mattner, Lutz; Roos, Bero
署名单位:
University of Lubeck; University of Hamburg
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-006-0043-0
发表日期:
2007
页码:
191-205
关键词:
INEQUALITIES
successes
number
摘要:
We give a shorter proof of Kanter's (J. Multivariate Anal. 6, 222-236, 1976) sharp Bessel function bound for concentrations of sums of independent symmetric random vectors. We provide sharp upper bounds for the sum of modified Bessel functions I-0(x) + I-1(x), which might be of independent interest. Corollaries improve concentration or smoothness bounds for sums of independent random variables due to Cekanavicius & Roos (Lith. Math. J. 46, 54-91, 2006); Roos (Bernoulli, 11, 533-557, 2005), Barbour & Xia (ESAIM Probab. Stat. 3, 131-150, 1999), and Le Cam (Asymptotic Methods in Statistical Decision Theory. Springer, Berlin Heidelberg New York, 1986).
来源URL: