Weak logarithmic Sobolev inequalities and entropic convergence
成果类型:
Article
署名作者:
Cattiaux, P.; Gentil, I.; Guillin, A.
署名单位:
Institut Polytechnique de Paris; Ecole Polytechnique; Universite Paris Nanterre; Universite PSL; Universite Paris-Dauphine; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Aix-Marseille Universite; Centre National de la Recherche Scientifique (CNRS)
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-007-0054-5
发表日期:
2007
页码:
563-603
关键词:
functional inequalities
poincare
rates
摘要:
In this paper we introduce and study a weakened form of logarithmic Sobolev inequalities in connection with various others functional inequalities (weak Poincare inequalities, general Beckner inequalities, etc.). We also discuss the quantitative behaviour of relative entropy along a symmetric diffusion semi-group. In particular, we exhibit an example where Poincare inequality can not be used for deriving entropic convergence whence weak logarithmic Sobolev inequality ensures the result.
来源URL: