Weak convergence of diffusion processes on Wiener space

成果类型:
Article
署名作者:
Kolesnikov, Alexander V.
署名单位:
Scuola Normale Superiore di Pisa
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-006-0023-4
发表日期:
2008
页码:
1-17
关键词:
generalized schrodinger-operators dirichlet forms infinite dimensions mosco-convergence uniqueness EQUATIONS limit
摘要:
Let gamma be a Gaussian measure on a Suslin space X, H be the corresponding Cameron-Martin space and {e (i) } subset of H be an orthonormal basis of H. Suppose that mu (n) = rho (n) center dot gamma is a sequence of probability measures which converges weakly to a probability measure mu = rho center dot gamma Consider a sequence of Dirichlet forms {E-n}, where E-n (f) = integral(x) parallel to del Hf parallel to(2)(H)p(n) d gamma and root p(n) epsilon W-2,W-1(gamma).We prove some sufficient conditions for Mosco convergence.
来源URL: