Maximal regularity for stochastic convolutions driven by L,vy processes
成果类型:
Article
署名作者:
Brzezniak, Zdzislaw; Hausenblas, Erika
署名单位:
University of York - UK; Salzburg University
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-008-0181-7
发表日期:
2009
页码:
615-637
关键词:
evolution equations
martingales
SPACES
摘要:
We generalize the maximal regularity result from Da Prato and Lunardi (Atti Accad Naz Lincei Cl Sci Fis Mat Natur Rend Lincei (9) Mat Appl 9(1):25-29, 1998) to stochastic convolutions driven by time homogenous Poisson random measures and cylindrical infinite dimensional Wiener processes.