Estimating the innovation distribution in nonparametric autoregression

成果类型:
Article
署名作者:
Mueller, Ursula U.; Schick, Anton; Wefelmeyer, Wolfgang
署名单位:
State University of New York (SUNY) System; Binghamton University, SUNY; Texas A&M University System; Texas A&M University College Station; University of Cologne
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-008-0141-2
发表日期:
2009
页码:
53-77
关键词:
empirical distribution function WEAK-CONVERGENCE asymptotic-behavior error distribution squared residuals GARCH MODELS regression ergodicity ARCH parameters
摘要:
We prove a Bahadur representation for a residual-based estimator of the innovation distribution function in a nonparametric autoregressive model. The residuals are based on a local linear smoother for the autoregression function. Our result implies a functional central limit theorem for the residual-based estimator.
来源URL: