Large deviations principles for stochastic scalar conservation laws

成果类型:
Article
署名作者:
Mariani, Mauro
署名单位:
Universite PSL; Universite Paris-Dauphine
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-009-0218-6
发表日期:
2010
页码:
607-648
关键词:
摘要:
Large deviations principles for a family of scalar 1 + 1 dimensional conservative stochastic PDEs (viscous conservation laws) are investigated, in the limit of jointly vanishing noise and viscosity. A first large deviations principle is obtained in a space of Young measures. The associated rate functional vanishes on a wide set, the so-called set of measure-valued solutions to the limiting conservation law. A second order large deviations principle is therefore investigated, however, this can be only partially proved. The second order rate functional provides a generalization for non-convex fluxes of the functional introduced by Jensen and Varadhan in a stochastic particles system setting.
来源URL: