Singular perturbations to semilinear stochastic heat equations

成果类型:
Article
署名作者:
Hairer, Martin
署名单位:
University of Warwick
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-010-0322-7
发表日期:
2012
页码:
265-297
关键词:
mosco convergence QUANTIZATION burgers spdes
摘要:
We consider a class of singular perturbations to the stochastic heat equation or semilinear variations thereof. The interesting feature of these perturbations is that, as the small parameter epsilon tends to zero, their solutions converge to the 'wrong' limit, i.e. they do not converge to the solution obtained by simply setting epsilon = 0. A similar effect is also observed for some (formally) small stochastic perturbations of a deterministic semilinear parabolic PDE. Our proofs are based on a detailed analysis of the spatially rough component of the equations, combined with a judicious use of Gaussian concentration inequalities.