Infinite-dimensional stochastic differential equations related to random matrices

成果类型:
Article
署名作者:
Osada, Hirofumi
署名单位:
Kyushu University
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-011-0352-9
发表日期:
2012
页码:
471-509
关键词:
wiener-processes diffusion-processes dirichlet forms brownian balls fermion geometry
摘要:
We solve infinite-dimensional stochastic differential equations (ISDEs) describing an infinite number of Brownian particles interacting via two-dimensional Coulomb potentials. The equilibrium states of the associated unlabeled stochastic dynamics are the Ginibre random point field and Dyson's measures, which appear in random matrix theory. To solve the ISDEs we establish an integration by parts formula for these measures. Because the long-range effect of two-dimensional Coulomb potentials is quite strong, the properties of Brownian particles interacting with two-dimensional Coulomb potentials are remarkably different from those of Brownian particles interacting with Ruelle's class interaction potentials. As an example, we prove that the interacting Brownian particles associated with the Ginibre random point field satisfy plural ISDEs.