Dimension dependent hypercontractivity for Gaussian kernels

成果类型:
Article
署名作者:
Bakry, Dominique; Bolley, Francois; Gentil, Ivan
署名单位:
Universite PSL; Universite Paris-Dauphine; Universite de Toulouse; Universite Toulouse III - Paul Sabatier; Centre National de la Recherche Scientifique (CNRS); Ecole Centrale de Lyon; Institut National des Sciences Appliquees de Lyon - INSA Lyon; Universite Claude Bernard Lyon 1; Universite Jean Monnet
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-011-0387-y
发表日期:
2012
页码:
845-874
关键词:
logarithmic sobolev inequalities transportation cost
摘要:
We derive sharp, local and dimension dependent hypercontractive bounds on the Markov kernel of a large class of diffusion semigroups. Unlike the dimension free ones, they capture refined properties of Markov kernels, such as trace estimates. They imply classical bounds on the Ornstein-Uhlenbeck semigroup and a dimensional and refined (transportation) Talagrand inequality when applied to the Hamilton-Jacobi equation. Hypercontractive bounds on the Ornstein-Uhlenbeck semigroup driven by a non-diffusive L,vy semigroup are also investigated. Curvature-dimension criteria are the main tool in the analysis.
来源URL: