Variance asymptotics for random polytopes in smooth convex bodies

成果类型:
Article
署名作者:
Calka, Pierre; Yukich, J. E.
署名单位:
Universite de Rouen Normandie; Lehigh University
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-013-0484-1
发表日期:
2014
页码:
435-463
关键词:
CENTRAL LIMIT-THEOREMS hulls set
摘要:
Let be a smooth convex set and let be a Poisson point process on of intensity . The convex hull of is a random convex polytope . As , we show that the variance of the number of -dimensional faces of , when properly scaled, converges to a scalar multiple of the affine surface area of . Similar asymptotics hold for the variance of the number of -dimensional faces for the convex hull of a binomial process in K.