Macdonald processes
成果类型:
Article
署名作者:
Borodin, Alexei; Corwin, Ivan
署名单位:
Massachusetts Institute of Technology (MIT)
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-013-0482-3
发表日期:
2014
页码:
225-400
关键词:
dimensional directed polymer
bethe-ansatz
MARKOV-PROCESSES
schur process
free-energy
diffusion
REPRESENTATION
EIGENVALUE
BOUNDARY
formulas
摘要:
Macdonald processes are probability measures on sequences of partitions defined in terms of nonnegative specializations of the Macdonald symmetric functions and two Macdonald parameters . We prove several results about these processes, which include the following. (1) We explicitly evaluate expectations of a rich family of observables for these processes. (2) In the case , we find a Fredholm determinant formula for a -Laplace transform of the distribution of the last part of the Macdonald-random partition. (3) We introduce Markov dynamics that preserve the class of Macdonald processes and lead to new integrable 2d and 1d interacting particle systems. (4) In a large time limit transition, and as goes to 1, the particles of these systems crystallize on a lattice, and fluctuations around the lattice converge to O'Connell's Whittaker process that describe semi-discrete Brownian directed polymers. (5) This yields a Fredholm determinant for the Laplace transform of the polymer partition function, and taking its asymptotics we prove KPZ universality for the polymer (free energy fluctuation exponent and Tracy-Widom GUE limit law). (6) Under intermediate disorder scaling, we recover the Laplace transform of the solution of the KPZ equation with narrow wedge initial data. (7) We provide contour integral formulas for a wide array of polymer moments. (8) This results in a new ansatz for solving quantum many body systems such as the delta Bose gas.
来源URL: