Invariant measure of scalar first-order conservation laws with stochastic forcing
成果类型:
Article
署名作者:
Debussche, A.; Vovelle, J.
署名单位:
Universite Paris Saclay; Centre National de la Recherche Scientifique (CNRS); Centre National de la Recherche Scientifique (CNRS); Ecole Centrale de Lyon; Institut National des Sciences Appliquees de Lyon - INSA Lyon; Universite Claude Bernard Lyon 1; Universite Jean Monnet
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-014-0599-z
发表日期:
2015
页码:
575-611
关键词:
large-time behavior
EQUATIONS
摘要:
Under an hypothesis of non-degeneracy of the flux, we study the long-time behaviour of periodic scalar first-order conservation laws with stochastic forcing in any space dimension. For sub-cubic fluxes, we show the existence of an invariant measure. Moreover for sub-quadratic fluxes we show uniqueness and ergodicity of the invariant measure. Also, since this invariant measure is supported by for some small, we are led to generalize to the stochastic case the theory of solutions developed by Chen and Perthame (Ann Inst H Poincar, Anal Non Lin,aire 20(4):645-668, 2003).
来源URL: