Annealed and quenched limit theorems for random expanding dynamical systems

成果类型:
Article
署名作者:
Aimino, Romain; Nicol, Matthew; Vaienti, Sandro
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - Institute of Physics (INP); Aix-Marseille Universite; Aix-Marseille Universite; Centre National de la Recherche Scientifique (CNRS); CNRS - Institute of Physics (INP); Universite de Toulon; University of Houston System; University of Houston
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-014-0571-y
发表日期:
2015
页码:
233-274
关键词:
continuous invariant-measures random transformations random maps LAW PRINCIPLE
摘要:
In this paper, we investigate annealed and quenched limit theorems for random expanding dynamical systems. Making use of functional analytic techniques and more probabilistic arguments with martingales, we prove annealed versions of a central limit theorem, a large deviation principle, a local limit theorem, and an almost sure invariance principle. We also discuss the quenched central limit theorem, dynamical Borel-Cantelli lemmas, Erdos-R,nyi laws and concentration inequalities.
来源URL: