Bayes procedures for adaptive inference in inverse problems for the white noise model

成果类型:
Article
署名作者:
Knapik, B. T.; Szabo, B. T.; van der Vaart, A. W.; van Zanten, J. H.
署名单位:
Vrije Universiteit Amsterdam; Budapest University of Technology & Economics; Leiden University - Excl LUMC; Leiden University; University of Amsterdam
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-015-0619-7
发表日期:
2016
页码:
771-813
关键词:
Empirical Bayes convergence-rates
摘要:
We study empirical and hierarchical Bayes approaches to the problem of estimating an infinite-dimensional parameter in mildly ill-posed inverse problems. We consider a class of prior distributions indexed by a hyperparameter that quantifies regularity. We prove that both methods we consider succeed in automatically selecting this parameter optimally, resulting in optimal convergence rates for truths with Sobolev or analytic smoothness, without using knowledge about this regularity. Both methods are illustrated by simulation examples.
来源URL: