Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrodinger equation
成果类型:
Article
署名作者:
Oh, Tadahiro; Tzvetkov, Nikolay
署名单位:
University of Edinburgh; Heriot Watt University; University of Edinburgh; CY Cergy Paris Universite
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-016-0748-7
发表日期:
2017
页码:
1121-1168
关键词:
global well-posedness
long-time behavior
gibbs measure
differential-equations
statistical-mechanics
cauchy-problem
ill-posedness
wave-equation
unit ball
kdv
摘要:
We consider the cubic fourth order nonlinear Schrodinger equation on the circle. In particular, we prove that the mean-zero Gaussian measures on Sobolev spaces , , are quasi-invariant under the flow.
来源URL: