On the convergence of the extremal eigenvalues of empirical covariance matrices with dependence
成果类型:
Article
署名作者:
Chafai, Djalil; Tikhomirov, Konstantin
署名单位:
Universite PSL; Universite Paris-Dauphine; University of Alberta
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-017-0778-9
发表日期:
2018
页码:
847-889
关键词:
singular-value
UNIVERSALITY
limit
wigner
shell
摘要:
Consider a sample of a centered random vector with unit covariance matrix. We show that under certain regularity assumptions, and up to a natural scaling, the smallest and the largest eigenvalues of the empirical covariance matrix converge, when the dimension and the sample size both tend to infinity, to the left and right edges of the Marchenko-Pastur distribution. The assumptions are related to tails of norms of orthogonal projections. They cover isotropic log-concave random vectors as well as random vectors with i.i.d. coordinates with almost optimal moment conditions. The method is a refinement of the rank one update approach used by Srivastava and Vershynin to produce non-asymptotic quantitative estimates. In other words we provide a new proof of the Bai and Yin theorem using basic tools from probability theory and linear algebra, together with a new extension of this theorem to random matrices with dependent entries.